Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Med Microbiol ; 73(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38668646

RESUMO

Background. Actinobacillus pleuropneumoniae, a member of the Pasteurellaceae family, is known for its highly infectious nature and is the primary causative agent of infectious pleuropneumonia in pigs. This disease poses a considerable threat to the global pig industry and leads to substantial economic losses due to reduced productivity, increased mortality rates, and the need for extensive veterinary care and treatment. Due to the emergence of multi-drug-resistant strains, Chinese herbal medicine is considered one of the best alternatives to antibiotics due to its unique mechanism of action and other properties. As a type of Chinese herbal medicine, Rhein has the advantages of a wide antibacterial spectrum and is less likely to develop drug resistance, which can perfectly solve the limitations of current antibacterial treatments.Methods. The killing effect of Rhein on A. pleuropneumoniae was detected by fluorescence quantification of differential expression changes of key genes, and scanning electron microscopy was used to observe the changes in A. pleuropneumoniae status after Rhein treatment. Establishing a mouse model to observe the treatment of Rhein after A. pleuropneumoniae infection.Results. Here, in this study, we found that Rhein had a good killing effect on A. pleuropneumoniae and that the MIC was 25 µg ml-1. After 3 h of action, Rhein (4×MIC) completely kills A. pleuropneumoniae and Rhein has good stability. In addition, the treatment with Rhein (1×MIC) significantly reduced the formation of bacterial biofilms. Therapeutic evaluation in a murine model showed that Rhein protects mice from A. pleuropneumoniae and relieves lung inflammation. Quantitative RT-PCR (Quantitative reverse transcription polymerase chain reaction is a molecular biology technique that combines both reverse transcription and polymerase chain reaction methods to quantitatively detect the amount of a specific RNA molecule) results showed that Rhein treatment significantly downregulated the expression of the IL-18 (Interleukin refers to a class of cytokines produced by white blood cells), TNF-α, p65 and p38 genes. Along with the downregulation of genes such as IL-18, it means that Rhein has an inhibitory effect on the expression of these genes, thereby reducing the activation of inflammatory cells and the production of inflammatory mediators. This helps reduce inflammation and protects tissue from further damage.Conclusions. This study reports the activity of Rhein against A. pleuropneumoniae and its mechanism, and reveals the ability of Rhein to treat A. pleuropneumoniae infection in mice, laying the foundation for the development of new drugs for bacterial infections.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Antraquinonas , Antibacterianos , Animais , Antraquinonas/farmacologia , Antraquinonas/uso terapêutico , Actinobacillus pleuropneumoniae/efeitos dos fármacos , Actinobacillus pleuropneumoniae/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Camundongos , Infecções por Actinobacillus/tratamento farmacológico , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/veterinária , Suínos , Modelos Animais de Doenças , Feminino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Pulmão/microbiologia , Pulmão/patologia , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/microbiologia
2.
Theriogenology ; 219: 1-10, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368704

RESUMO

Lysophosphatidic acid receptor-2 (LPAR2) is a G protein-coupled receptor, which is involved in various physiological processes such as cell development, proliferation, and apoptosis, and is thought to play an important role in follicular development and reproduction. There is evidence that miRNA recognition elements (MRE) in the gene 3'UTR often contain single nucleotide polymorphisms (SNPs) that can alter the binding affinity of the target miRNA, leading to dysregulation of gene expression. In this study, we detected a SNP in LPAR2 3 'UTR (rs410670692, c.*701C > T) in 384 small-tailed Han sheep using Sequenom MassARRAY®SNP genotyping. Association analysis showed that the SNP was significantly associated with litter size. Then, the effect of LPAR2 rs410670692 mutation on gene expression in sheep hosts was studied by molecular biotechnology. The results showed that the expression of LPAR2 in the TT genotype was significantly higher than that in the CC genotype, which confirmed the existence of rs410670692, a functional SNP, in LPAR2 3'UTR. We then used bioinformatics methods and double luciferase reporter gene assay to predict and confirm LPAR2 SNP rs410670692 as the direct targeting regulatory element of miR-939-5p. Cell transfection experiments further found that SNP rs410670692 down-regulated the mRNA and protein levels of LPAR2 by influencing the binding of miR-939-5p. To understand the function and mechanism of miR-939-5p in sheep granulosa cells (GCs), we conducted cell proliferation and apoptosis experiments which showed inhibited GCs proliferation along with promoted GCs apoptosis upon overexpression of miR-939-5p. Moreover, overexpression of miR-939-5p promotes apoptosis of granulosa cells by blocking the LPAR2-dependent PI3K/Akt signaling pathway. In conclusion, these results indicate that the SNP rs410670692 of LPAR2 is related to the litter size of small-tailed cold sheep, and miR-939-5p can act as a regulatory element binding to the C mutation of rs410670692 to regulate the expression of LPAR2, affect the development of GCs, and thus indirectly affect the litter size of sheep. These studies provide evidence for the involvement of LPAR2 polymorphism in sheep reproduction and are expected to provide new insights into the molecular genetic mechanisms of litter size traits in sheep.


Assuntos
MicroRNAs , Proteínas Proto-Oncogênicas c-akt , Feminino , Ovinos/genética , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Regiões 3' não Traduzidas , MicroRNAs/genética , MicroRNAs/metabolismo , Células da Granulosa/metabolismo , Apoptose/genética , Proliferação de Células/genética , Mutação
3.
J Med Microbiol ; 72(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38112519

RESUMO

Introduction. Various plasmid-mediated resistance genes have been reported in Glaesserella parasuis, but little is known about their global distribution features, evolution pattern and spread.Gap Statement. The potential mobilization mechanisms of resistance plasmids in G. parasuis have been poorly explored.Aim. The aim of the study was to investigate the prevalence and diversity of plasmid-mediated resistance genes among G. parasuis isolates, and focus on the analysis of the features of the resistance plasmids from G. parasuis.Method. The plasmids tested were sequenced using the Illumina HiSeq platform in conjunction with PCR and inverted PCR. The susceptibility of the host strains was determined by broth microdilution. The transfer of plasmids tested was conducted by electroporation. The sequence data were compared using bioinformatics tools and the data from our laboratory and the National Center for Biotechnology Information (NCBI) database.Results. Nineteen plasmids were identified from our laboratory and these resistance plasmids were functional and transferable. Moreover, we clustered five types of genetic backbones of plasmids from G. parasuis and revealed the global distribution features of the plasmid-mediated resistance genes.Conclusions. This is the first report of the coexistence of tet(H)-bearing type I plasmid and lnu(C)-bearing type II plasmid in one G. parasuis clinical isolate. In addition, this study provides the first view of the global distribution of plasmid-mediated resistance genes and classifies the plasmids in G. parasuis according to their backbone regions.


Assuntos
Haemophilus parasuis , Plasmídeos/genética , Haemophilus parasuis/genética , Sequência de Bases
4.
Front Physiol ; 14: 1288669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028794

RESUMO

Nitric oxide (NO), a free radical labile gas, is involved in the regulation of various biological functions and physiological processes during animal reproduction. Recently, increasing evidence suggests that the biological role and chemical fate of NO is dependent on dynamic regulation of its biosynthetic enzyme, three distinct nitric oxide synthase (NOS) according to their structure, location and function. The impact of NOS isoforms on reproductive functions need to be timely elucidated. Here, we focus on and the basic background and latest studies on the development, structure, importance inhibitor, location pattern, complex functions. Moreover, we summarize the exactly mechanisms which involved some cell signal pathways in the regulation of NOS with cellular and molecular level in the animal reproduction. Therefore, this growing research area provides the new insight into the important role of NOS male and female reproduction system. It also provides the treatment evidence on targeting NOS of reproductive regulation and diseases.

5.
Front Vet Sci ; 9: 926725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873690

RESUMO

Tibetan sheep are mainly distributed in the Qinghai-Tibet Plateau. Its meat is not only essential for the local people but also preferred by the non-inhabitant of this plateau also. To investigate the salient development features and molecular mechanism of the meat difference of LT muscle caused by different growth stages in Tibetan sheep, the carcass performance, meat quality, and comparative transcriptome analysis were performed for investigating the potential molecular mechanism of the meat quality difference of the LT muscle caused by four growth stages [4-months old (4 months), 1.5-years old (1.5 years), 3.5-years old (3.5 years), and 6-years old (6 years)] in the Tibetan sheep. The shear force increased with the increase of age (p < 0.05) while the intramuscular fat (IMF) was the highest at 1.5 y. The AMPK signaling pathway was significantly enriched in the four comparative groups. The weighted gene co-expression network analysis (WGCNA) results showed that the hub genes P4HA2, FBXL4, and PPARA were identified to regulate the meat quality. In summary, 1.5 years was found to be the most suitable slaughter age of the Tibetan sheep which ensured better meat tenderness and higher IMF content. Moreover, the genes LIPE, LEP, ADIPOQ, SCD, and FASN may regulate the transformation of the muscle fiber types through the AMPK signaling pathway, further affecting the meat quality.

6.
Front Vet Sci ; 9: 803758, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433904

RESUMO

Circular RNAs (circRNAs) have a regulatory role in animal skeletal muscle development. In this study, RNA sequencing was performed to reveal the temporal regularity of circRNA expression and the effect of the circRNA-miRNA-mRNA ceRNA regulatory network on the meat quality of longissimus thoracis (LT) muscle in Tibetan sheep at different growth stages (4 months old, 4 m; 1.5 years old, 1.5 y; 3.5 years old, 3.5 y; 6 years old, 6 y). There were differences in the carcass performance and meat quality of Tibetan sheep at different ages. Especially, the meat tenderness significantly decreased (p < 0.05) with the increase of age. GO functional enrichment indicated that the source genes of the DE circRNAs were mainly involved in the protein binding, and myofibril and organelle assembly. Moreover, there was a significant KEGG enrichment in the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, as well as the calcium signaling pathway, regulating the pluripotency of the stem cells. The circRNA-miRNA-mRNA ceRNA interaction network analysis indicated that circRNAs such as circ_000631, circ_000281, and circ_003400 combined with miR-29-3p and miR-185-5p regulate the expression of LEP, SCD, and FASN related to the transformation of muscle fiber types in the AMPK signaling pathway. The oxidized muscle fibers were transformed into the glycolytic muscle fibers with the increase of age, the content of intramuscular fat (IMF) was lowered, and the diameter of the muscle fiber was larger in the glycolytic muscle fibers, ultimately increasing the meat tenderness. The study revealed the role of the circRNAs in the transformation of skeletal muscle fiber types in Tibetan sheep and its influence on meat quality. It improves our understanding of the role of circRNAs in Tibetan sheep muscle development.

7.
Front Nutr ; 9: 847077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369085

RESUMO

Long noncoding RNA (lncRNA) plays an important regulatory role in mammalian adipogenesis and lipid metabolism. However, their function in the longissimus thoracis (LT) muscle of fatty acid metabolism of Tibetan sheep remains undefined. In this study, fatty acid and fat content in LT muscle of Tibetan sheep were determined, and RNA sequencing was performed to reveal the temporal regularity of lncRNA expression and the effect of lncRNA-miRNA-mRNA ceRNA regulatory network on lipid metabolism of LT muscle in Tibetan sheep at four growth stages (4-month-old, 4 m; 1.5-year-old, 1.5 y; 3.5-year-old, 3.5 y; 6-year-old, 6 y). The results indicated that the intramuscular fat (IMF) content was highest at 1.5 y. Moreover, the monounsaturated fatty acid (MUFA) content in 1.5 y of Tibetan sheep is significantly higher than those of the other groups (P < 0.05), and it was also rich in a variety of polyunsaturated fatty acids (PUFA). A total of 360 differentially expressed lncRNAs (DE lncRNAs) were identified from contiguous period transcriptome comparative groups of 4 m vs. 1.5 y, 1.5 y vs. 3.5 y, 3.5 y vs. 6 y, and 4 m vs. 6 y, respectively. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis found that the target genes in lncRNA trans-mRNA were significantly related to the protein digestion, absorption, and fatty acid biosynthesis pathways (P < 0.05), which demonstrated that DE lncRNA trans-regulated the target genes, and further regulated the growth and development of the LT muscle and intramuscular fatty acid metabolism in Tibetan sheep. We further analyzed the role of the lncRNA-miRNA-mRNA regulatory network in the lipid metabolism of Tibetan sheep. Additionally, GPD2, LIPE (lipase E hormone-sensitive enzyme), TFDP2, CPT1A, ACACB, ADIPOQ, and other mRNA related to fatty acid and lipid metabolism and the corresponding lncRNA-miRNA regulatory pairs were identified. The enrichment analysis of mRNA in the regulatory network found that the AMPK signaling pathway was the most significantly enriched (P = 0.0000112361). Comprehensive transcriptome analysis found that the LIPE, ADIPOQ, ACACB, and CPT1A that were regulated by lncRNA might change the formation of energy metabolism in Tibetan sheep muscle through the AMPK signaling pathway, and oxidized muscle fibers are transformed into glycolytic muscle fibers, reduced IMF content, and the fatty acid profile also changed.

8.
Animals (Basel) ; 12(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35268153

RESUMO

This study aimed to provide insights into molecular regulation and mitochondrial functionality under hypoxia by exploring the mechanism of adaptation to hypoxia, blood indexes, tissue morphology, mRNA/miRNA regulation, mitochondrial dynamics, and functional changes in Tibetan sheep raised at different altitudes. With regard to blood indexes and myocardial morphology, the HGB, HCT, CK, CK-MB, LDH, LDH1, SOD, GPX, LDL level, and myocardial capillary density were significantly increased in the sheep at higher altitudes (p < 0.05). The RNA-seq results suggested the DEmRNAs and DEmiRNAs are mainly associated with the PI3K-Akt, Wnt, and PPAR signaling pathways and with an upregulation of oncogenes (CCKBR, GSTT1, ARID5B) and tumor suppressor factors (TPT1, EXTL1, ITPRIP) to enhance the cellular metabolism and increased ATP production. Analyzing mRNA−miRNA coregulation indicated the mitochondrial dynamics and functions to be significantly enriched. By analyzing mitochondrial dynamics, mitochondrial fusion was shown to be significantly increased and fission significantly decreased in the heart with increasing altitude (p < 0.05). There was a significant increase in the density of the mitochondria, and a significant decrease in the average area, aspect ratio, number, and width of single mitochondrial cristae with increasing altitudes (p < 0.05). There was a significant increase in the NADH, NAD+ and ATP content, NADH/NAD+ ratio, and CO activity, while there was a significant decrease in SDH and CA activity in various tissues with increasing altitudes (p < 0.05). Accordingly, changes in the blood indexes and myocardial morphology of the Tibetan sheep were found to improve the efficiency of hemoglobin-carrying oxygen and reduce oxidative stress. The high expression of oncogenes and tumor suppressor factors might facilitate cell division and energy exchange, as was evident from enhanced mitochondrial fission and OXPHOS expression; however, it reduced the fusion and TCA cycle for the further rapid production of ATP in adaptation to hypoxia stress. This systematic study has for the first time delineated the mechanism of hypoxia adaptation in the heart of Tibetan sheep, which is significant for improving the ability of the mammals to adapt to hypoxia and for studying the dynamic regulation of mitochondria during hypoxia conditions.

9.
Gene ; 803: 145893, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34384864

RESUMO

Glycolysis and heat shock proteins (HSPs) play an important role in mediating the physiological response to hypoxia. The changes of glycolysis and HSPs with altitude would provide important information regarding ways to prevent hypoxia-related sickness in both animals and humans. In this study, the expression pattern of HIF1A, PDK4, HSP27 and HSP60, indexes activity and content of glucose metabolism were detected in heart, lung, brain, and quadriceps femoris taken from Tibetan sheep (Ovis aries) that were raised at different altitudes (2,500 m, 3,500 m and 4,500 m). The expression of HIF1A and PDK4 was increased with increasing altitude in all of the tissues. The lactate dehydrogenase (LDH) activities and adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NADH (redox state), NAD+), lactic acid (LA), pyruvic acid (PA) contents were all increased with increasing altitude in all of the tissues. The ratio of NADH/NAD+ and LA/PA were higher in sheep at an altitude of 4,500 m than of 3,500 m and 2,500 m in all tissues, except for the NADH/NAD+ ratio in lung and quadriceps femoris. An increase in the protein and mRNA expression of ATP-independent HSP27 during hypoxia condition was detected. The expression of ATP-dependent HSP60 mRNA and protein was increased in all of the tissues at an altitude of 3,500 m than of 2,500 m, but was decreased at an altitude of 4,500 m. These results suggest that glycolysis and HSPs are upregulated to ensure energy supply and proteostasis during hypoxia, but energy conservation may be prioritized over cytoprotective protein chaperoning in Tibetan sheep tissues during extreme hypoxia.


Assuntos
Aclimatação , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Altitude , Animais , Hipóxia Celular , Regulação da Expressão Gênica , Glicólise , Ovinos , Tibet , Regulação para Cima
10.
Arch Anim Breed ; 64(2): 345-353, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458561

RESUMO

Glycolysis and heat shock proteins (HSPs) play an important role in hypoxia-intolerant species during hypoxia conditions. This study was conducted to evaluate the differences of glycolysis and heat shock proteins (HSPs) in Gannan yaks (Bos grunniens), with the main goal of understanding how the response to hypoxia changes with altitude. Here, the genes and enzymes of glycolysis and HSPs were detected in heart, liver, lung, kidney, and longissimus dorsi from Gannan yaks at different altitude (2500 and 3500  m ) using qPCR, western blot, and enzyme kits. The results showed that the expression of HIF1A and PDK4 was increased with altitude ( P < 0.01 ) in above tissues. Significantly increased lactate dehydrogenase (LDH), adenosine triphosphate (ATP), and nicotinamide adenine dinucleotide (NADH) levels and the ratio of NADH/NAD + were also observed in heart, lung, and longissimus dorsi tissues ( P < 0.05 ), as well as a decreased citric acid (CA) level ( P < 0.05 ). Furthermore, we observed significant global increases in the protein and mRNA expression levels of both the ATP-independent HSP27 and the ATP-dependent HSP60 during hypoxic conditions ( P < 0.01 ). These findings revealed that hypoxia-reprogrammed glucose metabolism promotes energy supply via up-regulated glycolysis and weakness of the tricarboxylic acid (TCA) cycle. HSPs were activated and the prioritization of cytoprotective protein chaperone functions over energy conservation in yak under hypoxic conditions. These results are useful to better understand the unique adaptability of yak, allowing them to survive in hypoxia conditions.

11.
Arch Anim Breed ; 64(1): 211-221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34109270

RESUMO

Previous studies have shown that BMPR1B promotes follicular development and ovarian granulosa cell proliferation, thereby affecting ovulation in mammals. In this study, the expression and polymorphism of the BMPR1B gene associated with litter size in small-tail Han (STH) sheep were determined. The expression of BMPR1B was detected in 14 tissues of STH sheep during the follicular phase as well as in the hypothalamic-pituitary-gonadal (HPG) axis of monotocous and polytocous STH sheep during the follicular and luteal phases using quantitative polymerase chain reaction (qPCR). Sequenom MassARRAY® single nucleotide polymorphism (SNP) technology was also used to detect the polymorphism of SNPs in seven sheep breeds. Here, BMPR1B was highly expressed in hypothalamus, ovary, uterus, and oviduct tissue during the follicular phase, and BMPR1B was expressed significantly more in the hypothalamus of polytocous ewes than in monotocous ewes during both the follicular and luteal phases ( P < 0.05 ). For genotyping, we found that genotype and allele frequencies of three loci of the BMPR1B gene were extremely significantly different ( P < 0.01 ) between the monotocous and polytocous groups. Association analysis results showed that the g.29380965A > G locus had significant negative effects on the litter size of STH sheep, and the combination of g.29380965A > G and FecB (Fec - fecundity and B - Booroola; A746G) at the BMPR1B gene showed that the litter size of AG-GG, AA-GG, and GG-GG genotypes was significantly higher compared with other genotypes ( P < 0.05 ). This is the first study to find a new molecular marker affecting litter size and to systematically analyze the expression of BMPR1B in different fecundity and physiological periods of STH sheep.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA